Where First-Order and Monadic Second-Order Logic Coincide
نویسندگان
چکیده
منابع مشابه
First order quantifiers in~monadic second order logic
This paper studies the expressive power that an extra first order quantifier adds to a fragment of monadic second order logic, extending the toolkit of Janin and Marcinkowski [JM01]. We introduce an operation existsn(S) on properties S that says “there are n components having S”. We use this operation to show that under natural strictness conditions, adding a first order quantifier word u to th...
متن کاملAsymptotic Monadic Second-Order Logic
In this paper we introduce so-called asymptotic logics, logics that are meant to reason about weights of elements in a model in a way inspired by topology. Our main subject of study is Asymptotic Monadic Second-Order Logic over infinite words. This is a logic talking about ωwords labelled by integers. It contains full monadic second-order logic and can express asymptotic properties of integers ...
متن کاملProbabilistic Inference and Monadic Second Order Logic
This paper combines two classic results from two different fields: the result by Lauritzen and Spiegelhalter [21] that the probabilistic inference problem on probabilistic networks can be solved in linear time on networks with a moralization of bounded treewidth, and the result by Courcelle [10] that problems that can be formulated in counting monadic second order logic can be solved in linear ...
متن کاملGraph structure and Monadic second-order logic
Exclusion of minor, vertex-minor, induced subgraph Tree-structuring Monadic second-order logic : expression of properties, queries, optimization functions, number of configurations. Mainly useful for tree-structured graphs (Second-order logic useless) Tools to be presented Algebraic setting for tree-structuring of graphs Recognizability = finite congruence ≡ inductive computability ≡ finite det...
متن کاملCircle graphs and monadic second-order logic
A circle graph is the intersection graph of a set of chords of a circle. If a circle graph is prime for the split (or join) decomposition defined by Cunnigham, it has a unique representation as a set of intersecting chords, and we prove that this representation can be defined by monadic second-order formulas. By using the (canonical) split decomposition of a circle graph, one can define in mona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Computational Logic
سال: 2016
ISSN: 1529-3785,1557-945X
DOI: 10.1145/2946799